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Introduction

In most models of private or asymmetric information, possessors of private information
receive rents or profits.

Many applications of the mechanism design paradigm include the assumption that the
information held by the players is jointly independently distributed.

The independence assumption often leads to positive rents accruing to the possessors of
private information.

We provide a condition on the joint distribution of agents’ private information which is
both necessary and sufficient for reducing the value of this information to zero.
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Motivation

Consider two players: player 1 and player 2.

Let v1, . . . , vn be each bidder’s set of possible values, and let P be the matrix of bidder 1’s
conditional probabilities.

Thus, the ij th entry, pij , of P denotes the probability that bidder 2 has value vj given
that bidder 1 has value vi . Denote by pi , the i th row of P.

Finally, let πi be bidder 1 ’s expected profit from the Vickrey auction (excluding any
participation fees) when his value is vi .

CM’s restriction on P : for all i = 1, . . . , n, pi. /∈ co {pk}k ̸=i .

With the conditional distribution satisfying this condition, the auctioneer can extract all of
bidder 1’s surplus.
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Motivation

The mechanism to extract all of bidder 1’s surplus:

For each i = 1, . . . , n, there is a hyperplane xi ∈ Rn separating pi. and co {pk.} so that
xi · pi. = 0 and xi · pk. > 0 for all k ̸= i .

Now, for each m = 1, . . . , n construct the participation fee schedule (for bidder 1)
zm(j) = πm +α · xmj , where α > 0 will be specified below.

Thus, if bidder 1 wishes to participate in the Vickrey auction, he must first (knowing his
own value) choose a participation fee schedule zm(·) say, thereby agreeing to pay zm(j) if
player 2 announces a value of vj .

Since 1’s payoff in the auction itself is independent of the participation fee schedule he
chooses, he will choose that schedule yielding the lowest expected fee. That is, bidder 1 ,
given that his value is i , will choose m = 1, . . . , n to minimize pi. · zm = πm + αpi. · xm.
Now, since pi. · xm > 0 whenever m ̸= i and pi · xi = 0, we may choose α > 0 so that for
every i , pi. · zm is minimized when m = i . Hence for every i = 1, . . . , n, if bidder 1 has
value vi he will optimally choose fee schedule zi (·) and earn an expected surplus of zero.

Using a similarly constructed set of fee schedules for bidder 2, the auctioneer can in this
way extract the full surplus.
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Continuous Type Model
Now consider the continuum analogue to CM’s result. Let f (s | t) be the density of s
conditional on an agent’s type t ∈ [0, 1], and suppose this agent anticipates profits π(t)
on average from participation in the Vickery auction.

The analogous full rent extraction problem for the seller is:

Construct finitely many participation fee schedules z1(·), . . . , zN(·) so that for all t ∈ [0, 1]

π(t) = min
1⩽n⩽N

∫ 1

0
zn(s)f (s | t)ds

If such schedules exist, and the agent is risk neutral, then the agent’s rents can be
extracted.

However, we can not guarantee the equation is solvable in general.

Suppose that given f , the following were true:

∀ε > 0,∀π ∈ C [0, 1], ∃z1, . . . , zN ∈ C [0, 1] such that ∀t ∈ [0, 1]

0 ⩽ π(t)− min
1⩽n⩽N

∫ 1

0
zn(s)f (s | t)ds < ε.

Then, regardless of the π determined by f as a result of the Vickery auction there is a
participation charge which does not induce bidder 1 to refuse to participate given his type
(the first inequality in (1.2)) and extracts all but ε of his rents where ε is arbitrarily small.
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Continuous Type Model

Let R(f ) denote the set of all such participation charges. Hence,

R(f ) =

{
y : (∃z ∈ C [0, 1])(∀t ∈ [0, 1])y(t) =

∫ 1

0
z(s)f (s | t)ds

}
⊆ C [0, 1]

Note that R(f ) is a linear subspace of C [0, 1].

The mechanism designer also has available participation charges that are independent of
the agent’s report and are not contained in R(f ).

These charges are constructed as follows: Let N be a finite set of indices, and let zn be a
member of C [0, 1] for every n ∈ N. Present the agent with a choice of participation
charges from R(f ). That is, the agent selects n ∈ N, and is then charged zn(s) when s is
realized. The agent of type t will select n minimizing the participation charge:

∫ 1

0
zn(s)f (s | t)ds.
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Continuous Type Model

These charges are constructed as follows: Let N be a finite set of indices, and let zn be a
member of C [0, 1] for every n ∈ N. Present the agent with a choice of participation
charges from R(f ). That is, the agent selects n ∈ N, and is then charged zn(s) when s is
realized. The agent of type t will select n minimizing the participation charge:

∫ 1

0
zn(s)f (s | t)ds

If the agent’s choice of n is not used in the game to follow, the participation charge given
by

y(t) = min
n

∫ 1

0
zn(s)f (s | t)ds

is independent of his reported value in the game to follow. We denote the set of such
participation charges by r(f ) ⊇ R(f ). Thus,

r(f ) =

{
y : (∃N)(∀t ∈ [0, 1])y(t) = min

1⩽n⩽N

∫ 1

0
zn(s)f (s | t)ds

}
⊂ C [0, 1].
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Continuous Type Model

The following facts are easily established:

(2.2) y1, y2 ∈ r(f ) ⇒ y1 + y2 ∈ r(f ),

(2.3) y ∈ r(f ), α ⩾ 0 ⇒ αy ∈ r(f ),

(2.4) y1, . . . , yk ∈ r(f ) ⇒ min1⩽n⩽k yn ∈ r(f ),

(2.5) 1,−1 ∈ r(f ),

(2.6) y1 ∈ r(f ), y2 ∈ R(f ) ⇒ y1 − y2 ∈ r(f ).

The goal is to show that r̄(f ) = C [0, 1].
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Continuous Type Model

Before stating the theorem we define for any ε > 0, δ > 0, and t0 ∈ [0, 1], the set

U (ε, δ, t0) of (ε, δ) u-shaped functions at t0 as follows: u ∈ C [0, 1] is in U (ε, δ, t0) if and

only if

1 u(t) ⩾ 0 for all t ∈ [0, 1],
2 u (t0) ⩽ ε, and
3 u(t) ⩾ 1 whenever |t − t0| > δ.

Note that if ε ⩽ ε0 and δ ⩽ δ0, then U (ε, δ, t0) ⊆ U (ε0, δ0, t0).

Also note that U (ε, δ, t0) is convex with a nonempty interior.
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Theorem 1

Theorem (1)

Suppose A ⊆ C [0, 1] satisfies

1 (2.7) x , y ∈ A ⇒ x + y ∈ A,

2 (2.8) x ∈ A, α > 0 ⇒ αx ∈ A,

3 (2.9) x1, . . . , xn ∈ Ā, y(t) = min {x1(t), . . . , xn(t)} ⇒ y ∈ Ā,

4 (2.10) 1,−1 ∈ A,

5 (2.11) for all ε, δ > 0 and every t ∈ [0, 1],U(ϵ, δ, t) ∩ Ā ̸= ∅. Then Ā = C [0, 1].
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Theorem 2

We now present our main result which provides a necessary and sufficient condition (the
continuum analogue of that in Crémer and McLean (1988)) for (almost) full rent
extraction.

Theorem (2)

r̄(f ) = C [0, 1] if and only if the following condition holds:

(*) For every t0 ∈ [0, 1] and every µ ∈ ∆[0, 1]

µ ({t0}) ̸= 1 implies that f (· | t0) ̸=
∫ 1

0
f (· | t)µ(dt)
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Necessity
Proof: We first prove the necessity of (∗) for r̄(f ) = C [0, 1]. So, suppose that

r̄(f ) = C [0, 1], and that t0 ∈ [0, 1] and µ ∈ ∆[0, 1] satisfy f (· | t0) =
∫ 1
0 f (· | t)µ(dt). We

will show that µ ({t0}) = 1.

Let y(t) = (t − t0)
2 for every t ∈ [0, 1]. Hence, y ∈ C [0, 1] = r̄(f ). There must therefore

be a sequence {yn}∞n=1 of functions in r(f ) so that yn → y . Since each yn ∈ r(f ) we have

yn(t) = min
1⩽i⩽mn

{
wn
1 (t), . . . ,w

n
mn

(t)
}

for every n, and every t ∈ [0, 1], where

wn
i (t) =

∫ 1

0
zni (s)f (s | t)ds for some zni ∈ C [0, 1]

Thus, for each n and every t ∈ [0, 1], yn(t) = wn
i(n,t)

(t) for some i(n, t) ⩽ mn. In

particular,
yn (t0) = wn

i(n,t0)
(t0)

=

∫ 1

0
zni(n,t0)(s)f (s | t0)ds

=

∫ 1

0

∫ 1

0
zni(n,t0)(s)f (s | t)µ(dt)ds

=

∫ 1

0
wn
i(n,t0)

(t)µ(dt)
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Necessity

Since yn (t0) → y (t0) = 0, this implies that the last integral converges to zero. Now, by
definition, yn(t) ⩽ wn

i(n,t0)
(t) so that (since µ ∈ ∆[0, 1])

∫ 1

0
yn(t)µ(dt) ⩽

∫ 1

0
wn
i(n,t0)

(t)µ(dt) → 0

Hence, 0 ⩾
∫ 1
0 y(t)µ(dt) =

∫ 1
0 (t − t0)

2 µ(dt), so that µ ({t0}) = 1.
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Sufficiency
We turn now to sufficiency, and proceed by way of contradiction. Suppose that
r̄(f ) ̸= C [0, 1] and that (*) holds. Since hypotheses (2.7)-(2.10) of Theorem 1 are
satisfied when Ā = r(f ), it must be the case (by Theorem 1) that (2.11) fails when Ā is
replaced by r̄(f ).

Thus, there exist ε0, δ0 > 0, and t0 ∈ [0, 1] such that U (ε0, δ0, t0) ∩ r̄(f ) = ∅. Since
R̄(f ) ⊆ r̄(f ) we have a fortiori that U (ε0, δ0, t0) ∩ R̄(f ) = ∅.

Now, R̄(f ) is convex (being a linear subspace) and as previously noted, U (ε0, δ0, t0) is
convex and has a nonempty interior. So, by the separating hyperplane theorem (Dunford
and Schwartz (1958, 1988; Theorem 8, p. 417), there is a continuous linear functional on
C [0, 1] separating R̄(f ) and U (ε0, δ0, t0).

Equivalently, by the Riesz representation theorem (Dunford and Schwartz (1958, 1988;
Theorem 3, p. 265)), there is a regular, countably additive, signed measure µ ̸= 0 on the
Borel subsets of [0, 1] and a constant c ∈ R such that

∫ 1
0 x(t)µ(dt) ⩽ c for all x ∈ R̄(f ), and∫ 1
0 x(t)µ(dt) ⩾ c for all x ∈ U (ε0, δ0, t0)

Since R̄(f ) is a linear subspace, we must therefore have
∫ 1
0 x(t)µ(dt) = 0 for every

x ∈ R̄(f ). (Otherwise there is an x0 ∈ R̄(f ) with
∫ 1
0 x0(t)µ(dt) ̸= 0, and a suitable choice

of α ∈ R yields
∫ 1
0 αx0(t)µ(dt) > c, violating (2.12) since αx0 ∈ R̄(f ).) Hence, c can be

taken to be zero without loss of generality.
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Sufficiency
Combining (2.12) and the definition of R(f ) we then have

∫ 1

0

{∫ 1

0
z(s)f (s | t)ds

}
µ(dt) = 0 for every z ∈ C [0, 1]

By Fubini’s theorem, this is equivalent to∫ 1

0
z(s)

[∫ 1

0
f (s | t)µ(dt)

]
ds = 0 for every z ∈ C [0, 1]

Hence, the continuous function of s in square brackets is identically zero. That is∫ 1

0
f (· | t)µ(dt) = 0

By the Jordan decomposition theorem (Cohn (1980, Corollary 4.1.5, p. 125)), we may
write µ as the difference between two positive measures µ+and µ−at least one of which is
finite. Furthermore, there are disjoint Borel subsets of [0, 1],A+and A−, such that
µ+

(
A−)

= µ− (
A+

)
= 0, and A+ ∪ A− = [0, 1]. Thus (2.14) becomes (2.15)∫

A+
f (· | t)µ+(dt) =

∫
A−

f (· | t)µ−(dt).
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Sufficiency

Regarding both sides of (2.15) as functions of s ∈ [0, 1], integrating over s (with respect
to Lebesgue measure) and using Fubini’s theorem yields

∫
A+ dµ+ =

∫
A− dµ− = 1, where

the second equality is without loss of generality. Hence, both µ+and µ−are in ∆[0, 1].

Combining (*), (2.15), and the fact that µ ̸= 0, yields that neither µ+nor µ− is a point
mass on t0. In particular, since µ− ∈ ∆[0, 1] is regular (see Billingsley (1968, Theorem
1.1)), there is a closed subset B of A−, and a δ ∈ (0, δ0] such that
B ∩ (t0 − δ, t0 + δ) = ∅ and µ−(B) > 0. Choose K > 1/µ−(B) ⩾ 1, and define the step
function x on [0, 1] as follows:

x(t) =


0, if t ∈ (t0 − δ, t0 + δ)

K , if t ∈ B

1, otherwise

Hence,
∫ 1
0 x(t)µ(dt) ⩽ 1− Kµ−(B) < 0.
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Sufficiency

Now, using Theorem 1.2 of Billingsley, it is straightforward to construct a sequence of
continuous functions {xn}∞n=1 on [0, 1] such that for every n,

(i) xn(t) ⩾ 1, for every t /∈ (t0 − δ, t0 + δ),

(ii) xn(t) ⩾ 0, for every t ∈ [0, 1],

(iii) xn (t0) = 0,

(iv) for every t ∈ [0, 1], xn(t) → x(t),

(v) for every t ∈ [0, 1], xn(t) ⩽ K .

By (i)-(iii) xn ∈ U (ε0, δ, t0) ⊆ U (ε0, δ0, t0) (since δ ⩽ δ0 ), for every n. And by (ii), (iv),

(v), and Lebesgue’s dominated convergence theorem,
∫ 1
0 xn(t)µ(dt) →

∫ 1
0 x(t)µ(dt) < 0.

Thus for n large enough,
∫ 1
0 xn(t)µ(dt) < 0, contradicting (2.13).
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Condition

Note that if for every t0 ∈ [0, 1], there is an xt0 ∈ r̄(f ) taking a minimum uniquely at t0,
then setting y(t) = xt0 (t)− xt0 (t0) in the proof of necessity above is enough to show that
(∗) holds and hence (by sufficiency) that r̄(f ) = C [0, 1].

This observation is at the heart of the three corollaries which follow. Like Theorem 1,
Theorem 2 also holds if [0, 1] is replaced by any compact metric space.

Corollary (1)

Suppose x ∈ R(f ), y ∈ r(f ) satisfy

(∀t)x ′(t) > 0

(∀t)y ′(t)/x ′(t) is strictly increasing in t

Then r̄(f ) = C [0, 1].
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Condition

Corollary (1)

Suppose x ∈ R(f ), y ∈ r(f ) satisfy

(∀t)x ′(t) > 0

(∀t)y ′(t)/x ′(t) is strictly increasing in t

Then r̄(f ) = C [0, 1].

Proof: As noted in Remark 2, we need only find for each t0 ∈ [0, 1] a function in r̄(f )
taking a minimum uniquely at t0. Let

q(t) = y(t)−
y ′ (t0)

x ′ (t0)
x(t)

By (2.6), q ∈ r(f ). Moreover

q′(t) = y ′(t)−
y ′ (t0)

x ′ (t0)
x ′(t) ⋛ 0 as

y ′(t)

x ′(t)
⋛

y ′ (t0)

x ′ (t0)
as t ⋛ t0

Thus q(t) achieves a minimum uniquely at t = t0.
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Condition

By Corollary 1, it is straightforward to show that combined with first order stochastic
dominance, a sufficient condition for r̄(f ) = C [0, 1] is that E

[
s2 | E(s | t) = µ

]
be a

strictly convex function of µ. The following example illustrates this.

Example 1: f (s | t) = tst−1 and µ = E(s | t) = t
t+1

implies that t = µ
1−µ

. Also,

E
(
s2 | t

)
= t

t+2
, so that E

{
s2 | Es = µ

}
= µ

2−µ
, a convex function of µ ∈ [0, 1

2
]. Thus,

letting x(t) = E(s | t) = t
t+1

and y(t) = E
(
s2 | t

)
= t

t+2
, we have that y′(t)

x′(t) = 2( t+1
t+2

)2

is increasing in t.

Since by first order stochastic dominance x ′(t) > 0, Corollary 1 can be directly applied to
conclude that r̄(f ) = C [0, 1]. In general, with first order stochastic dominance and
E
[
s2 | E(s | t) = µ

]
a convex function of µ, x(t) = E(s | t) and y(t) = E

(
s2 | t

)
will

satisfy the hypotheses of Corollary 1. Furthermore, in this case the participation fee
schedules zn(s), can be chosen to be quadratic in s. These conditions are satisfied for
many common distributions, in particular those with mean and variance increasing in t.
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Condition
The lemma to follow establishes a useful equivalence for placing functions in R̄(f ). [A]
denotes the linear span of A.

Lemma (1)

R̄(f ) = [{f (s | ·) : 0 ⩽ s ⩽ 1}].

Proof of Lemma 1: Fix s0 ∈ [0, 1] and ε > 0. For s ∈ [0, 1], let

z(s) =

{
1/2α if s0 − α ⩽ s ⩽ s0 + α

0 otherwise

and choose α so that

|s − s0| < α ⇒ |f (s | t)− f (s0 | t)| < ε

(this is feasible since f is continuous on a compact set, and hence uniformly continuous).
Then ∣∣∣∣∫ 1

0
z(s)f (s | t)ds − f (s0 | t)

∣∣∣∣
=

∣∣∣∣∣
∫ s0+α

s0−α

1

2α
f (s | t)ds − f (s0 | t)

∣∣∣∣∣ =
1

2α

∣∣∣∣∣
∫ s0+α

s0−α
(f (s | t) − f (s0 | t)) ds

∣∣∣∣∣
⩽

1

2α

∫ s0+α

s0−α
|f (s | t) − f (s0 | t)| ds ⩽

1

2α

∫ s0+α

s0−α
εds = ε

Thus, for s0 ∈ [0, 1], f (s0 | ·) ∈ R̄(f ). Since R̄(f ) is closed under linear combinations, we
have established one inclusion.
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Condition

Since z, f are continuous, ∀ε > 0∃s1, . . . , sk such that for all t ∈ [0, 1],

∣∣∣∣∣
∫ 1

0
z(s)f (s | t)ds − 1/k

k∑
i=1

z (si ) f (si | t)

∣∣∣∣∣ < ε

Thus
∫ 1
0 z(s)f (s, ·)ds ∈ [{f (s | ·) | s ∈ [0, 1]}] as desired.

Corollary (2)

Suppose that (2.16) (∀t)(∃s) (∀t′ ̸= t) f (s | t) > f (s | t′). Then r̄(f ) = C [0, 1].

Proof: By Lemma 1, −f (s | ·) ∈ r̄(f ). By (2.16), for each t, there exists an s with
−f (s | ·) taking a minimum uniquely at t. In light of Remark 2, r̄(f ) = C [0, 1].
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Condition

The final result of this section provides further conditions for rent extraction which, in
some instances, are simple to verify.

Corollary (3)

Suppose there exists a set S ⊆ [0, 1] such that

1 (2.17) (∀s ∈ S) f (s | t) is strictly concave in t, and

2 (2.18) (∀t0, t1 ∈ [0, 1]) (∃s ∈ S) f (s | t0) ⩾ f (s | t1).

Then r̄(f ) = C [0, 1].

Proof: Suppose (2.17) and (2.18) hold, but (*) fails. Then there exists a t0 ∈ [0, 1] and
µ ∈ ∆[0, 1] not a point mass on t0, with f (· | t0) =

∫
f (· | t)µ(dt). Define t1 =

∫
tµ(dt).

Since f (s | t) is strictly concave in t, for all s ∈ S, we have, by Jensen’s inequality,

(∀s ∈ S) f (s | t0) =
∫

f (s | t)µ(dt) < f (s | t1)

which contradicts (2.18).

R. Preston McAfee and Philip J. Reny (UT Austin)Correlated Information and Mechanism Design January 3, 2025 24 / 31



Condition

We now show by example that the combination of first order stochastic dominance and
affiliation is not sufficient to guarantee r̄(f ) = C [0, 1]. As the example illustrates, the
combination of these properties admits an f with R(f ) comprised of only linear functions
and no u-shaped functions.

Example 2: f (s | t) = 1 + (2s − 1)t. Note
∫ 1
0 f (s | t)ds = 1 +

(
s2 − s

)
t
∣∣1
0
= 1, and

f (s | t) ⩾ 1− t ⩾ 0, so f is an admissible conditional density.

F (s | t) =
∫ s

0
f (u | t)du = s + t

(
s2 − s

)
Ft(s | t) = s2 − s < 0 for s ∈ (0, 1)

so F satisfies strict first order stochastic dominance.

Also,
∂2

∂s∂t
log f (s | t) =

∂

∂s

2s − 1

1 + (2s − 1)t
> 0

so f is affiliated (see Milgrom and Weber (1982)). Equivalently, f has the monotone
likelihood ratio property.

Finally, R(f ) = [{1, t}], the set of linear functions. (1 indicates the constant function, t
the identity.) It is easily seen that r̄(f ) is then the set of concave functions, and is thus a
strict subset of C [0, 1].
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Unbounded Support

We mention briefly that the results of this section can be extended in a straightforward
manner to the unbounded support case. This may require allowing players to choose from
among countably (rather than finitely) many participation charges, so in what
immediately follows r(f ) is:

r(f ) =

{
y(t) ∈ C(R) | y(t) = min

n⩾1

∫
zn(s)f (s | t)ds

for some countable subset {zn}∞n=1 of C(R)}, where C(R) denotes the set of bounded
continuous functions on R.
Application: consider a principal designing a contract for a risk neutral agent possessing
private information t ∈ [0, 1]. The principal knows he can receive signal s correlated to t,
sometime in the future. What is the value of s?

Consider the full information gains from trade G , and the solution to the informationally
constrained contract design problem, which gives the principal profits of G ′. We have
shown that if an efficient mechanism exists, then, for many densities, the value of the
correlated information is G − G ′. This follows since the principal can set up a mechanism
which is full-information efficient, producing rents G , and then extract those rents via a
participation charge zn(s). That is, the principal “sells the agency” to the agent for zn(s).
We believe that, in many economic problems, the presence of correlated information is
natural, and destroys the ”inefficiencies resulting from private information” so often cited
in the literature.
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Applications
Bargaining mechanism: Consider a buyer with value t, known only to himself, of an item
and a potential seller, who privately observes his own opportunity cost of sale, s. It is
common knowledge that s and t were drawn from a joint density g(s, t) with support
[0, 1]2. Both buyer and seller are risk neutral.

Let h(s | t) be the conditional density of the seller’s value given that the buyer’s value is t
and let k(t | s) be the conditional density of the buyer’s value given the seller’s value is s,
and suppose that both h and k satisfy (*) (ruling out independence, in particular).

Then, letting πσ , πβ denote the seller’s, buyer’s rent function (a function of their
respective value of the good) respectively obtained from participation in the game defined
by the pre-mechanism, we have, for (s, t) ∈ [0, 1]2,

πσ(s) ≡
∫ 1
0 (t − s)k(t | s)dt,

πβ(t) ≡
∫ 1
0 (t − s)h(s | t)ds.

Now, by assumption r̄(k) = r̄(h) = C [0, 1]. Hence, given any ε > 0 there exist finite sets

of participation fee schedules
{
zβn

}
n∈Nβ

, {zσn }n∈Nσ
, one for the buyer and one for the

seller, such that for all (s, t) ∈ [0, 1]2,

0 ⩽ πσ(s)− min
n∈Nσ

∫ 1

0
zσn (t)k(t | s)dt < ε

and

0 ⩽ πβ(t)− min
n∈Nβ

∫ 1

0
zβn (s)h(s | t)ds < ε
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Applications

Hence, the budget balancer’s net expected revenue becomes:

R ≡
∫ 1

0

∫ 1

0
cσ(s)g(s, t)dsdt +

∫ 1

0

∫ 1

0
cβ(t)g(s, t)dtds − G

⩾ (G − ε) + (G − ε)− G

= G − 2ε

As before, g(s, t) is the joint density between the buyer’s and seller’s valuation of the
good. Let

f (s | t) = g(s, t)/

∫ 1

0
g(u, t)du

so that f is the conditional density, and let

F (s | t) =
∫ s

0
f (u | t)du

be the distribution function of s, conditional on t. Let F2(s | t) = ∂/∂tF (s | t).
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Applications

By taking advantage of our explicit description of this mechanism design environment, we
get the following result:

Theorem (3)

Suppose ∀(s, t) ∈ (0, 1)2,
F2(s | t) < 0

∂

∂t

[
t +

F (s | t)
F2(s | t)

]
⩾ 0.

Then there exists an efficient trading mechanism giving all of the rents to the seller.
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Conclusion

We have examined the robustness of mechanism design solutions when independence of
information does not hold.

We found that private information is often worthless; it does not lead to rents for its
possessors in a variety of contexts.
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Thanks!
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